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1 Introduction

The visual cortex transforms the geometry of visual information into a space of con-

cepts. There is not a photographic mapping from the retina to the cortex, but instead

a neuronal wiring that leads to the ability to transform raw visual input into geo-

metric patterns. Three key observations, compiled in von der Malsburg’s 1973 paper,

have been made about how the cortex performs this transformation:

• There are neurons, which are selectively sensitive to the presentation of light

bars and edges of a certain orientation

• The neurons seem to be organized in “functional columns”, i.e. the neurons

lying within one cylinder vertical to the cortical surface are sensitive to the

same orientation

• Neighboring columns tend to respond to stimuli of similar orientation

By what mechanisms are the retinal to cortical connections organized in order to

produce these patterns? They are unlikely to be caused by genetic pre-determination,

as the identification of so many connections would be taxing upon the genetic code. In

addition, genetic pre-determination cannot account for the high degree of plasticity

seen in experiments. Alternatively, there must be a way for the visual cortex to

undergo self-organization as it is presented with various inputs.

The model employed in this paper will describe a method of self-organization.

There will be two main planes of cells. The retinal cells take input from the en-

vironment and constantly fire when presented with light. The retinal cells will be
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connected to a plane of cortical cells. The firing of the retinal cells will excite the

excitatory cells (E-cells) of the cortex. The strength of connection from each retinal

cell to each cortical cell is initially random. See Figure 1.

Figure 1: Each retinal cell is connected to each excitatory cortical cell (E-Cell) in this
model. The strengths of connection are initially drawn from a flat distribution [12].

In turn, there are also intra-cortical connections. The cortex is composed of both

excitatory (E-cells) and inhibitory (I-cells). Upon crossing a threshold, all cortical

cells have the ability to fire and affect those cells around them. Active E-cells will

excite both the nearby E-cells and the I-cells and move them toward their firing

thresholds. Active I-cells will inhibit their next-to-nearest neighbors. The range of

inhibitory cells is thus larger than the range of excitatory cells, as this will prevent

instabilities due to cycles of excitation and inhibition in the system of cells. See Fig-

ure 2 for a visual representation of the intra-cortical wiring.

2



Figure 2: This figure depicts the connection strengths between excitatory cells (E
to E), from excitatory cells to inhibitory cells (E to I), and from inhibitory cells to
excitatory cells (I to E). The connection from inhibitory cells to inhibitory cells is
ignored.

Given the retinal to cortical connections and the intra-cortical connections, there

must be a way to update the system so that it can undergo self-organization. This

is accomplished through an implementation of Hebbian learning. Cortical E-cells fire

due to positive input from other E-cells and from retinal cells. As intra-cortical con-

nection strengths are a function of distance (Figure 2), the learning must happen in

the wiring between the retina and the cortex. If a cortical E-cell fires, the strength of

connection between it and all active retinal cells is increased. Over time, this will lead

to more likely firing given the same retinal input. In order to keep overall connection

strength constant, other connections to the E-cell are weakened at the expense of

strengthening the connection between active retinal cells and the E-cell.
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2 The Model

The model that we implemented was presented by von der Malsburg in [19] and is

similar to models investigated in [8, 4, 16, 17]. The model is presented as a hexagonal

array of cells, which allows for a nearly circular neighborhood for each cell. The

cortical hexagonal array is set up with 15 cells on the principal diagonal and thus is

an array of 169 cells. The model is further split into two planes: the excitatory plane

(E-plane) and the inhibitory plane (I-plane). Each cell is thus two cells superimposed

on each other (excitatory E-cell and inhibitory I-cell). Therefore, the differential

system consists of 2 × 169 equations. The cortical plane of 338 cells is attached to

the retinal plane which consists of 19 cells. The connection strength between the

cortical and retinal plane are initially drawn from the uniform distribution on the

interval [0, s]. The connection strengths between E-cells and I-cells, I-cells and E-

Figure 3: This is a schematic of the planes containing the excitatory and inhibitory
cells. The connectivity parameters are set according to the arrows described by
connectivity strengths p, q, and r.

cells, and two E-cells are set up according to Figures 2 and 3. One E-cell only affects

its immediately neighboring E-cells. Similarly, one E-cell affects its corresponding
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I-cell and the immediately neighboring I-cells. Finally, one I-cell affects the E-cells

that are two cells away from the I-cell.

Figure 4: The set of nine retinal stimuli.

There is a set of nine standard stimuli used to excite the cortical cells, see Figure 4.

These stimuli represent light bars presented with different orientations. The stimuli

consist of 7 excited cells (signal strength of 1) and 12 non-excited cells (signal strength

of 0) and can be viewed as rotations of the first stimulus by an angle of π(k−5.5)
9

for

k = 1, 2, 3, 4, 5, 6, 7, 8, 9. Moreover, the geometric arrangement of these stimuli is not

the important aspect, but rather the relationships created via the mutual overlapping

of the light bars.

2.1 Time Evolutionary Model

Let Hk(t) be the excitatory state of cortical cell k at time t. If Hk(t) crosses the

threshold of 1, then the cell fires. In this model, the output signal of the cell, H∗k(t),
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increases linearly with the excitatory state. So

H∗k(t) =


Hk(t)− 1, if H∗k(t) > 1,

0, otherwise.

(2.1.1)

Let A∗i (t) be the signal of afferent fibre i at time t. This value is identically 1 if

retinal cell i is active and identically 0 if it is not. The dynamics of Hk(t) can be

found using

d

dt
Hk(t) = −αkHk(t) +

169∑
l=1

plkH
∗
l (t) +

19∑
i=1

sikA
∗
i (t), k = 1, ..., 169, (2.1.2)

where αk is the decay constant of the excitatory state of cortical cell k, plk is the

strength of connection from cell l to cell k, and sik is the strength of connection

between fibre i and cell k (see Figure 3). These dynamics lead to an initial transient

response eventually succumbing to a steady state solution (dHk

dt
= 0).

Physiologically, equation (2.1.2) has a very straight forward meaning. In this

equation, the first sum,
∑169

l=1 plkH
∗
l (t) represents the neighboring cells contributions

to the excitatory state of cell k; while, the second sum,
∑19

i=1 sikA
∗
i (t), represents the

contributions to the excitatory state of cell k from afferent fibers (the nine standard

stimuli). In general, A∗i (t) could vary with time, but, as will be seen, we are not

concerned with these dynamics. We are only concerned with how the cells act dur-

ing steady state. Thus, we fix A∗i (t) and compute solutions until steady states are

attained.
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2.2 Steady State Solutions

In the steady state solution, it is possible to analyze the behavior of the cortical

cells in response to various stimuli. In order to accomplish this, a more specialized

set of equations is needed. The specialization of Equation 2.1.2 to dHk

dt
= 0 and the

absorbtion of the αk term leads to

Hk =
169∑
l=1

p′lkH
∗
l +

19∑
i=1

s′ikA
∗
i . (2.2.1)

We can split Hk into excitatory and inhibitory signals. Let Ek be the excitatory state

of E-cell number k and Ik be the excitatory state of I-cell number k. Similarly, let E∗k

and I∗k be the signals of the E-cell k and I-cell k if they cross the threshold. Now it

is possible to elucidate the dynamics of Ek and Ik:

Ek =
169∑
i=1

plkE
∗
l −

169∑
i=1

qlkI
∗
l +

19∑
i=1

s′ikA
∗
i (2.2.2)

Ik =
169∑
i=1

rlkE
∗
l (2.2.3)

where plk > 0 is the connection strength from E-cell l to E-cell k, qlk > 0 is the

connection strength from I-cell l to E-cell k, rlk > 0 is the connection strength from

E-cell l to I-cell k, and s′ik > 0 is the connection strength from afferent fibre i to E-cell

k. Recall that s′ik is the value being updated by Hebbian learning.

Again, these equations have a very straight forward physiological meaning. The

sum,
∑169

i=1 plkE
∗
l , represents the contribution to the kth E-cell’s excitatory state by
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the neighboring E-cells, the sum,
∑169

i=1 qlkI
∗
l , represents the contribution by the neigh-

boring I-cells, and the sum,
∑19

i=1 s
′
ikA
∗
i , represents the contribution from the afferent

fibers. Similarly, the sum,
∑169

i=1 rlkE
∗
l , represents the contribution to the kth I-cells

excitatory state by the neighboring E-cells. By looking at the values of Ek given

different inputs, it is possible to see what stimuli cause cell k to fire. In this way, the

observations given in the introduction can be found.

3 Analysis and Results

Equation (2.1.2) gives a general equation for the time evolutionary dynamics of our

neural network. In practice, we solve an adaptation of this equation. The adaptation

takes into account both the inhibitory and excitatory cells and can be formulated as

follows:

dEk
dt

= αk(−Ek +
169∑
i=1

plkE
∗
l −

169∑
i=1

qlkI
∗
l +

19∑
i=1

s′ikA
∗
i ) (3.0.4)

dIk
dt

= βk(−Ik +
169∑
i=1

rlkE
∗
l ). (3.0.5)

It is worth noting that by changing the αk and βk parameters, one compresses or

lengthens the time it takes to reach steady state, but differing these values does

not change the values of the equations at steady state. Thus, to make solving the

differential system more time efficient, one should make these parameters as large as

possible. This will make the equations reach steady state quicker. Some care needs to

be taken in choosing these parameters because if αk and βk are too large, the system

will blow up and not attain a steady state.
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Figure 5: This figure depicts the typical solution of the excitatory state of two cells.
This image clear depicts the three phases: logarithmic growth with first plateau,
oscillations, and final plateau.

Figure 6: Steady state solutions without learning for each of the nine stimuli in the
previous figure.

We solved the above time evolutionary equations (3.0.4) and (3.0.5) in MATLAB

using a forward Euler’s method (as per von der Malsburg’s suggestion). We iterated

the 2 × 169 differential equations until we attained possible steady states. In [19],

they describe the above system and state that they iterated the system of differential
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equations until the mean change in solutions between two steps was less then 0.5%.

Upon investigation of the solutions to this differential system, we notice that the

solutions begin to grow logarithmically, then plateau. This plateau lasts for a while

(about t = 30 milliseconds for some cells), then the solutions begin to oscillate. After

oscillation, the solutions finally reach steady state which occurs at about t = 70

milliseconds. Once we have reached the post oscillation steady state, we notice that

the hexagonal array has already formed crude patterns (see Figure 6) .

With these “steady state” solutions, we then subjected the afferent connectivity

strength values to Hebbian learning. This learning phase consisted of the following

algorithm:

1. Choose a stimuli from the set of nine standard stimuli in Figure 4;

2. Determine the steady state solution to the network of differential equations;

3. Update the afferent fiber connection strengths via Hebb’s rule;

4. Renormalize the afferent fiber connection strengths.

One stage of learning consists of presenting all nine stimuli in the following order:

1,6,2,7,3,8,4,9,5. Von der Malsburg choose this scheme in order to reduce possible

special effects due to maximally overlapping stimuli. After each presentation, the

synaptic strengths are updated using Hebb’s rule with respect to some learning con-

stant h:

s′ik = sik + hA∗iE
∗
k . (3.0.6)

This formula updates s′ik by increasing connectivity strength between retinal cell i

and excitatory cell k if the stimuli caused the cell to excite. Following the connection
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strength update, s′ik is then normalized so that the total connectivity for each cell is

held constant at 19s/2. This normalization is as follows:

sik =
s′ik∑19
i=1 s

′
ik

19s

2
. (3.0.7)

The learning phase as described represents the reorganization of the afferent fibers

between the retinal and cortical planes. This reorganization plays a large role in stroke

recovery [17, 12]. Strokes can compromise the transport of blood to neurons in the

brain, which may lead to the damage and death of cells. This damage could impair

the functionality of the stroke victim. Plasticity in the cortical cells surrounding

the damaged cells plays a central role in recovering from strokes. This plasticity is

described by Hebbian learning and the learning phases in which we subject our model.

Figure 7: Solutions for the nine stimuli after 20 learning phases. Clearly, the cells are
beginning for fire in patterns.

The results of the Hebbian learning are depicted in Figures 7 and 8. Patterns

begin to form after the first stage of learning and become increasingly defined as
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Figure 8: Solutions for the nine stimuli after 100 learning phases. The patterns are
now well defined.

we perform more and more learning phases. These patterns are due to the increased

afferent connectivity strengths updated via Hebb’s rule. One tool that may be utilized

to analyze the pattern formation is the tuning curve for each cell. The tuning curve

at a given learning step is the excited state of the E-cell with respect to all nine

initial stimuli. If the tuning curve at k(= 1, 2, 3, 4, 5, 6, 7, 8, 9) is above the threshold

(set identically to 1), then the kth stimuli causes the cell to excite. Since the nine

stimuli are just rotations of the of each other by π(k−5.5)
9

radians, we can determine

the most likely orientation of the cell given by the angle of the stimuli that causes the

greatest excitatory state. As von der Malsburg has shown, the tuning curves for each

cell become unimodal (if the cell is excited) as learning progresses because the cell

becomes sensitive to similar light orientations. This activity signifies that the afferent

strengths are reorganizing and learning.

Due to vague descriptions in the literature about the implementation of the this

model, we were unable to obtain similar tuning curve results. Although we do form
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patterns as seen in Figures 7 and 8, the tuning curves do not become unimodal.

We hypothesize that this is due, in part, to how we solve our differential equations,

the choice in parameters, and the equations actually implemented (be it the time

evolutionary equation presented in the Subsection “Time Evolutionary Model” or

the equations presented in the “Analysis and Results” section). In fact, we have

been in contact with Professor Christoph von der Malsburg (see Appendix), who was

unable to recall the details of his implementation.

4 Discussion

Neural network models have many applications in neuroscience as well as in computer

science and other computational science. In fact, pattern forming neural networks are

currently used to analyze high dimensional data using a method called Self Organizing

Maps. In our study, we focused on the application of neural networks to stroke

recovery. With an implemented neural network of the cortical receptive field, similar

to the one we investigated, one can subject the afferent connections to stroke-like

ablations. That is, we can severe some of the afferent connections (set the connectivity

strength identically to zero), then investigate how the surrounding cells reorganize

to compensate. There have been many investigations of this sort (see [5, 17]). In

fact, Einarsdottir et al. showed that one possible influence to cortical plasticity and

stroke recovery is the level of γ-aminobutyric (GABA-ergic) inhibition. Also, Sober

et al. utilize a similar model to hypothesis about possible stroke recovery phases.

Stroke recovery is similar to the development of an immature nervous system in
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which the synaptic (afferent) strengths increase or decrease with respect to Hebbian

learning. Sober et al. propose that stroke recovery has two phases: a dynamic

phase and a plasticity phase. The dynamic phase consists of dynamic changes in

neural activity, while the plasticity phase consists of updating synaptic strengths via

a Hebbian learning rule.

5 Conclusions

The study of neural networks is ever increasing. With increased computational power,

larger and larger networks can be implemented and studied. Also, there has been a lot

of research performed in the area of pattern formation. As we have seen, this research

has applications in stroke recovery and, in fact, can pinpoint important parameters

that could effect the success of recovery. Being able to determine the important

parameters in this dynamical system has the potential of massive impact in health

care and rehabilitation. For this and many other reasons, further understanding of

these neural networks and their dynamics has the possibility of greatly improving

stroke recovery.

6 Author Contributions

Drew Kouri implemented the model and graphical displaying of the model. He also

wrote the Analysis and Results, Discussion, and Conclusions sections. Eric Webb

wrote code to generate possible tuning curve representations, but those were not
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included in our paper because we did not see similar patterns as von der Malsburg.

He also wrote the Introduction and Model sections. Kouri and Webb worked together

in editing the paper and creating the presentation.
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7 Appendix

7.1 Email from Christoph von der Malsburg

From View message header detail Christoph von der Malsburg <malsburg@fias.uni-frankfurt.de>

Sent Sunday, May 4, 2008 3:51 pm

To Drew Kouri <drew.kouri@case.edu>

Cc

Bcc

Subject Re: Questions on 1973 Self-Organization paper

Drew Kouri wrote:

> I am studying neuroscience at Case Western Reserve University in

> Cleveland, OH. Currently, I am trying to implement the model you

> present in your 1973 paper "Self-Organization of Orientation Sensitive

> Cells in the Striate Cortex." I have some questions involving your

> implementation. First of all, you say that you stop your differential

> equation solver after 20 iterative (time) steps (page 91), what is the

> size of the time steps that you use? Also, what are the initial

> conditions and the values for the decay constant that you use?

>

Hi,

This was 35 years ago and I don’t remember the details, as you can

imagine. But here are some remarks that may help you get the thing

going. What time steps mean in real time (milliseconds in

neurophysiological terms) is your phantasy -- one would have to know the

exact time constants of the cells involved, and these are not so well

known, especially at the early ontogenetic time where this model is to

be applied. But that is probably not your concern anyway. I have used

the Euler method, which I’m sure I have described. There is a

coefficient that scales the change in neural excitation (and another one

that scales synaptic changes). If you make that too big, the system
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gets unstable and all variables blow up. On the other hand, in the

interest of speed you want to set these coefficients as big as

possible. What you should do is repeat a calculation with half the

coefficients and see whether you get approximately the same results

(after twice the number of steps, of course). If that is approximately

the case you are on the safe side. The first problem I had to battle

with at the time was that the system went into oscillations, and I first

had to learn how to set parameters such that these would at least be

dampened.

As for initial values, the synaptic strengths were random numbers

(normalized to one, as described in the paper). The initial values of

cellular excitation I don’t remember, but they may just have been zero.

What bothered me about the model for a long time was that it could work

only after eye opening, whereas the orientation columns are present

already at eye opening. I finally have come around to publish a model

that can work in the dark. See

http://www.jneurosci.org/cgi/content/full/28/1/249. That model is not

much more complicated than my 1973 one, and you should at least look

into it.

Have fun,

Christoph von der Malsburg

7.2 von der Malsburg Differential System Code

function [H,i] = eulers(tspan,n,icond,N,A,s,p,q,r)

% Determine Time Step

dt = tspan/n;

% Define Differential System

alpha = 2;
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ys = @(y) (y-1).*(y>1);

F = @(x,y,k) alpha*(-x(k)+p(:,k)’*ys(x)-q(:,k)’*ys(y)+s(:,k)’*A);

G = @(x,y,k) alpha*(-y(k)+r(:,k)’*ys(x));

% Set Initial Conditions

x(:,1) = icond(1:N);

y(:,1) = icond(N+1:2*N);

% Begin Forward Euler’s

i = 2;

m = 1;

while((m>0.005)+(i<n)==2)

for j = 1:N

x(j,i) = x(j,i-1)+dt*F(x(:,i-1),y(:,i-1),j);

y(j,i) = y(j,i-1)+dt*G(x(:,i-1),y(:,i-1),j);

end

% Compute mean change

m = mean([abs(x(:,i)-x(:,i-1));abs(y(:,i)-y(:,i-1))]);

i = i+1;

end

H = [x;y];

7.3 Solver and Hexagonal Array Code

% =========================================================================

% Stationary von der Malsburg Model of Changes in Receptive Fields

% Drew Kouri

% =========================================================================

% Here is a quick implementation of the stationary model.

% For some reason, I am getting negative populations, then once the

% connection strength reaches equilibrium, there is a periodic solutions.

% This is probably not correct, but I cannot find any error in the code.

% Have a look at it.

% =========================================================================
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for k = 1:9

N = 169; % Number of Cortical Cells

M = 19; % Number of Retinal Fibres

% Cell Signal Function

star = @(y,th) (y-th).*(y>th);

% Signal of Afferent Fibres

% 01 02 03

% 04 05 06 07

% 08 09 10 11 12

% 13 14 15 16

% 17 18 19

A = zeros(M,1);

state(:,1) = [2;5;6;10;14;15;18];

state(:,2) = [2;3;6;10;14;17;18];

state(:,3) = [3;6;7;10;13;14;17];

state(:,4) = [6;7;9;10;11;13;14];

state(:,5) = [7;8;9;10;11;12;13];

state(:,6) = [4;8;9;10;11;12;16];

state(:,7) = [4;5;9;10;11;15;16];

state(:,8) = [1;4;5;10;15;16;19];

state(:,9) = [1;2;5;10;15;18;19];

% Beginning Stimuli

% k = 1;

A(state(:,k)) = ones(7,1);

% Learning Presentation Sequence

list = [1;6;2;7;3;8;4;9;5];

% Strength of Connections

load paramStat.mat
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% Learning Parameter

h = 0.05;

% Find steady state solution

% Define Initial Conditions

icond = zeros(2*N,1);

% Solve ODS (Explicit Runge-Kutta (4,5) formula)

Y = eulers(50,200,icond,N,A,s,p,q,r);

% Initialize Excitatory Populations

E = zeros(N,101);

E(:,1) = Y(1:N,length(Y(1,:)));

% Begin Learning

for j = 2:101

b = 0;

if(j==61), h=0.1; end % Increasing Learning Parameter after 60

tic

for i = 1:9

% Stimuli Presentation

A = zeros(M,1);

A(state(:,list(i))) = ones(7,1);

% Solve To Steady State and Update Excitatory Cells

[Y,z] = eulers(50,200,Y(:,length(Y(1,:))),N,A,s,p,q,r);

b = b+z;

E(:,j) = Y(1:N,length(Y(1,:)));

% Hebbian Learning and Normalization

s = s+h*A*star(E(:,j),1)’;

s = (M*0.25/2)*(s./repmat(sum(s),M,1));

end

disp(strcat(’Learning Phase #’,num2str(j-1)))
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disp(strcat(’# Euler Steps =’,num2str(b-9)))

toc

end

% Define Postions in plot window

pos = [0,8:15,14:-1:8];

cpos = cumsum(pos);

R = [6;6;4;4;2;2;0;0;0;2;2;4;4;6;6];

row = @(i) (mod(i,2)==1)*(2*(1:pos(i))+R(i-1)-1)+(mod(i,2)==0)*(2*(1:pos(i))+R(i-1));

% Create Image Array

im = zeros(2*15-1,2*15,101);

Ys = (E>1)+1;

for j = 1:101

for i =2:16

im(2*(i-1)-1,row(i),j) = Ys(cpos(i-1)+1:cpos(i),j);

end

end

name = strcat(’run’,num2str(k));

save(name,’E’,’im’);

clear all

end

% % Record .avi of Receptive Field Time Series

% fig=figure;

% imagesc(im(:,:,1)-1)

% set(fig,’DoubleBuffer’,’on’);

% set(gca,’xlim’,[0 30],’ylim’,[0 30],...

% ’NextPlot’,’replacechildren’)

% colormap([1 1 1;.9 .9 .9])

% % mov = avifile(’plasticity2.avi’);

% for i = 1:101

% if((sum(sum((im(:,:,i)-1)>0))==0)==1)
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% colormap([1 1 1;0.9 0.9 0.9])

% else

% colormap([1 1 1;0.9 0.9 0.9;0 0 0])

% end

% imagesc(im(:,:,i)-1)

% title(strcat(’Learning Phase #’,num2str(i-1)))

% % F = getframe(gca);

% % mov = addframe(mov,F);

% pause(.5)

% end

% % mov = close(mov);
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